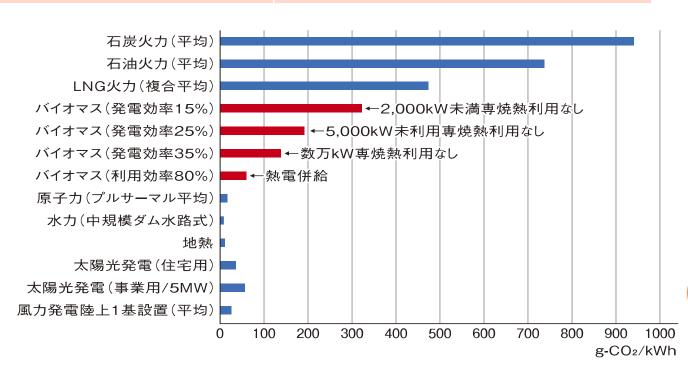
バイオマス熱の排熱利用


4DHフォーラム 2023年3月27日(月) NPO法人バイオマス産業社会ネットワーク理事長 泊 みゆき

バイオマス発電と熱利用の比較

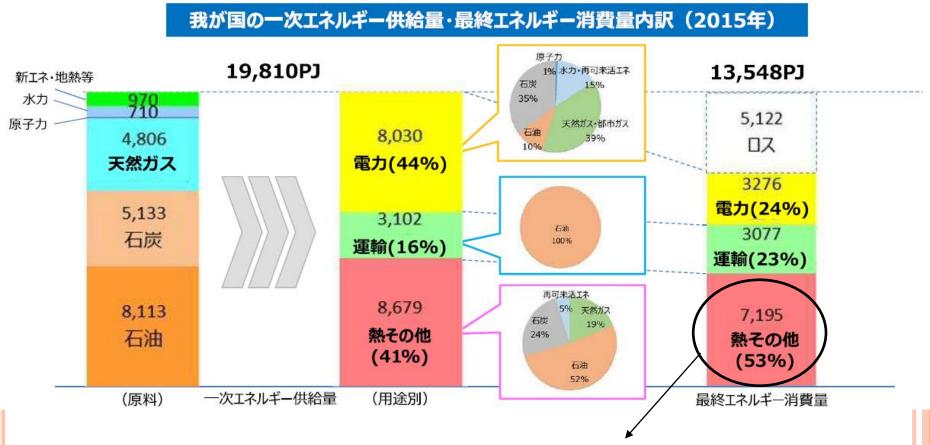
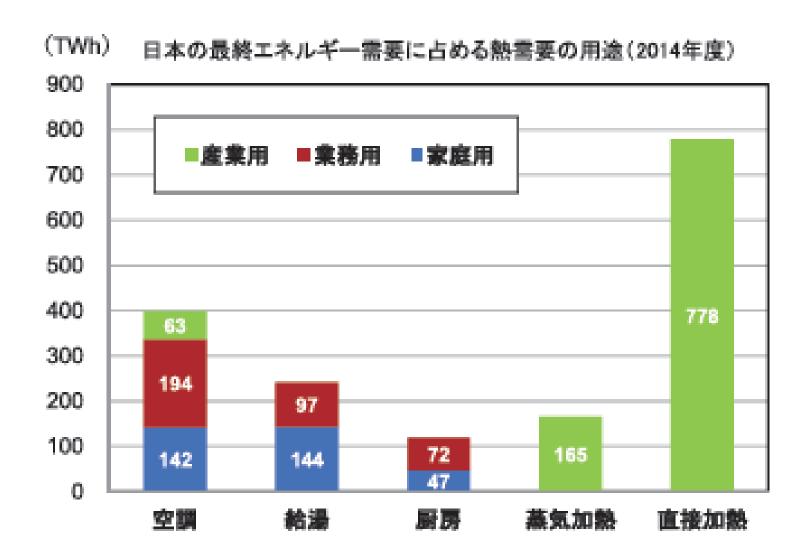

	発電	熱利用
経済性	FIT等の支援がないと、 廃棄物以外は厳しい	化石燃料に対し優位 (現状では導入費が高価)
希少性• 代替性	太陽光・風力の発電コストが劇的に低下中	短中期的に中温以上の再エネ熱と して貴重
温暖化 対策効果	発電効率は概ね30%台以下、 温暖化対策効果は限定的	利用効率90%以上も可能 他の再エネに匹敵する削減効果

図:日本の 発電種類ごとの温 室効果ガス排出


出所:バイオマス 白書2019

温暖化対策に再エネ熱政策は必須

最終エネルギー消費の半分は熱

出所:日本木質バイオマスエネルギー協会「バイオマスエネルギーデータブック2018」

産業用熱にバイオマスを

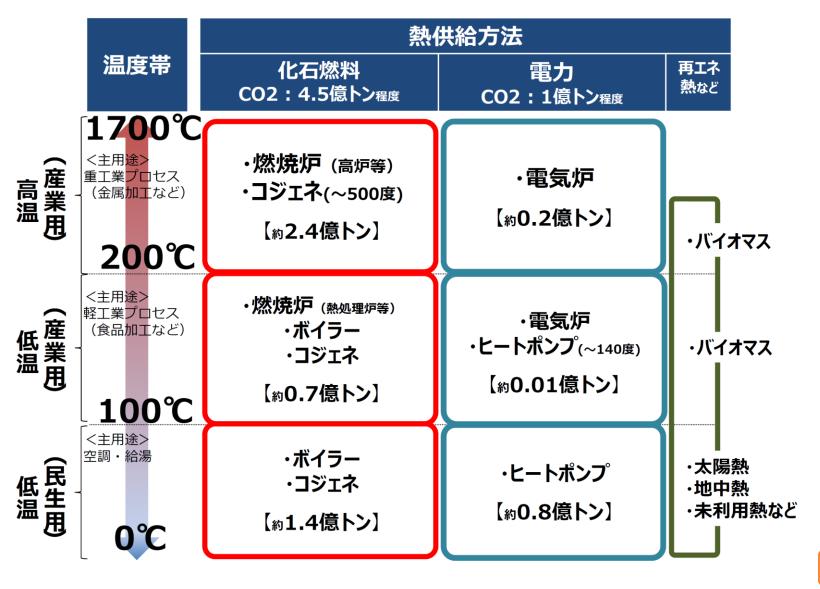
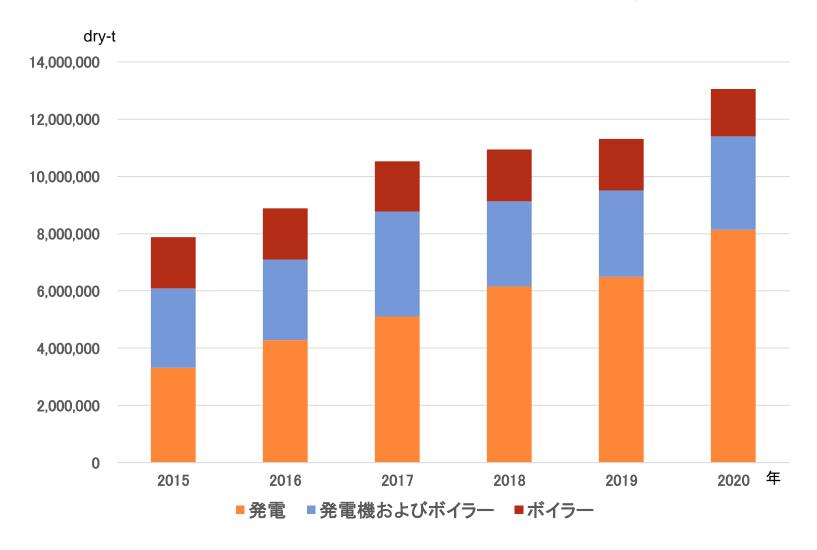


図:熱の主な供給方法と熱の利用温度帯

出所:経済産業省資料


オランダ

- ■2020年10月、オランダ政府は、そのCO2排出量と大量の木材の 消費を理由に、バイオマス発電と都市暖房用バイオマスへの補助金 を段階的に廃止することを発表
- ■2021年2月、オランダ議会が新規のバイオマス熱供給施設への 補助金廃止を決議、その影響は計画中の約50施設
- ■持続可能なバイオマスの利用可能性と応用*

「再生可能エネルギーの目標を達成するためにバイオマスのエネルギ 一的利用が避けられない場合、できれば代替案が実行不可能か、利用 できない状況に限定すべきである」

*インフラ・水管理省への助言レポート AVAILABILITY AND APPLICATIONS OF SUSTAINABLE BIOMASS Report on a search for shared facts and views

用途別木質バイオマス利用量の推移

出典:木質バイオマスエネルギー利用動向調査より著者作成

木質バイオマス熱導入目標案

- 2030年に向けた木質バイオマス熱利用導入目標案691.7万原油 換算kl(日本木質バイオマスエネルギー協会)
- 第五次エネルギー基本計画の目標を念頭に、同協会で木質バイオマス熱利用の2030年内訳を想定。

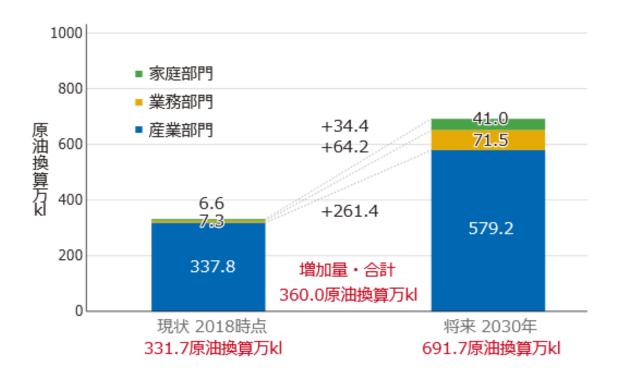
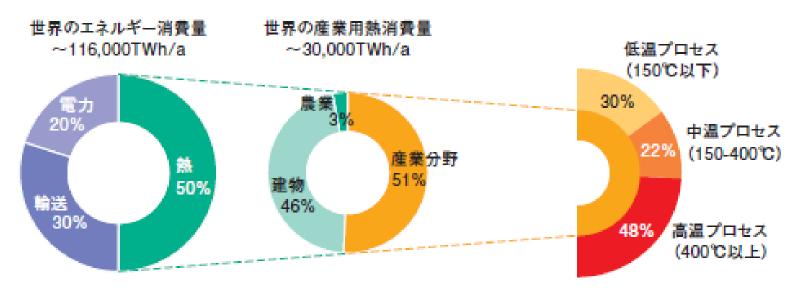



図3:2030年に向けた木質バイオマス熱利用導入目標案

(日本木質バイオマスエネルギー協会作成)

データはIEA WORLD Energy Balance Highlights 2021に基づく Mには暖房に使用される電気も含まれる

図5:産業用熱の世界的な分類 出所:レンツ博士資料

出所:バイオマス白書2023

製紙、食品、木材、セメント産業など産業プロセス熱用の近代バイオエネルギーは2009年から2019年の間に約16%増加し、建築物におけるバイオ熱需要は同期間に7%増加した。

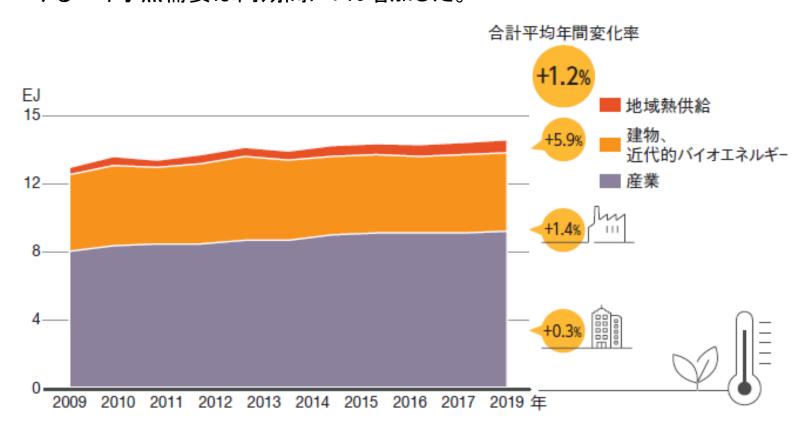
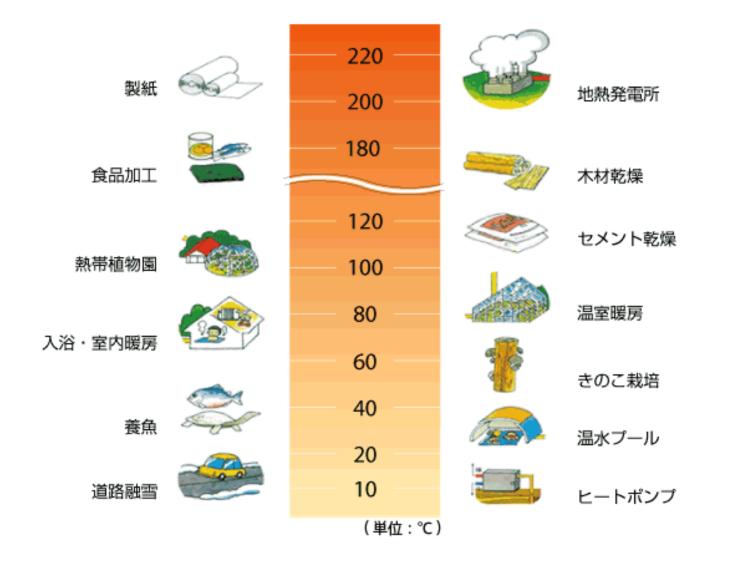



図12:世界のバイオエネルギー熱利用量(最終用途別)2009年~2019年*27 (仮訳: NPO法人バイオマス産業社会ネットワーク)

出典:REN21 RENEWABLES 2021 GLOBAL STATUS REPORT

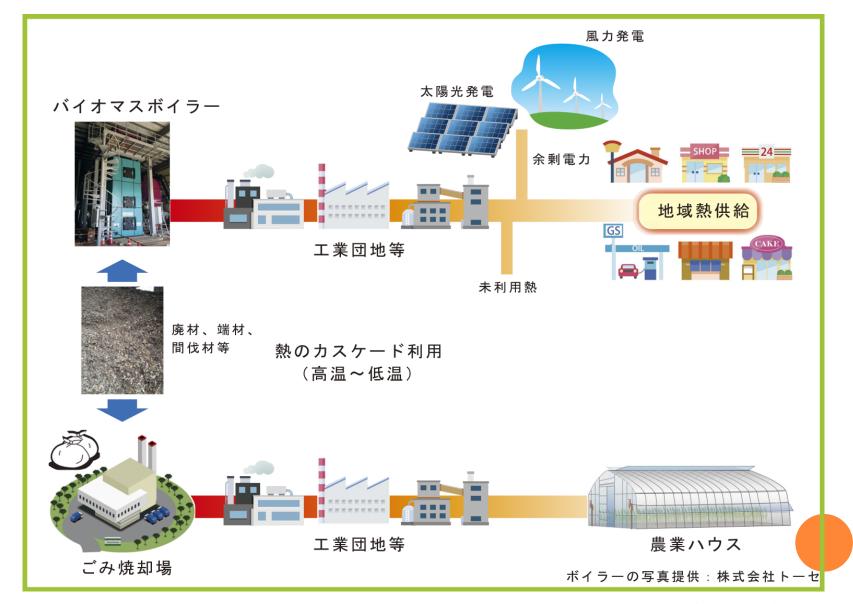
それぞれの熱用途ごとの温度帯

産業の熱需要:業種別の熱供給条件

以下のような工場で、焼却施設から供給可能な温度・圧力の蒸気需要が存在

	項目	製造業側で必	廃棄物処理施設な	いらの熱供給形態
	業種	要な温度	高圧蒸気	低圧蒸気
1	食料品(食材加工)	~150°C	_	0.8MPa * 170°C
2	食料品(調理品(中食))	~170°C	_	0.8MPa * 220°C
3	食料品(調味料)	~200°C	3.0MPa*300°C	_
4	食料品(パン・菓子)	~200°C	3.0MPa*300°C	_
5	飲料・たばこ・飼料(清涼飲料)	~180°C	_	0.8MPa * 220°C
6	飲料・たばこ・飼料(酒類)	~120°C	_	0.8MPa * 170°C
7	繊維工業	~170°C	_	0.8MPa * 220°C
8	パルプ・紙・紙加工品	~200°C	3.0MPa*300°C	_
9	無機化学	~150°C	_	0.8MPa * 170°C
10	有機化学	~180°C	_	0.8MPa * 220°C
11	医薬品	~140°C	_	0.8MPa * 170°C
12	石油製品•石炭製品	~200°C	3.0MPa*300°C	_
13	プラスチック製品	~200°C	3.0MPa*300°C	_
14	ゴム製品	~230°C	3.0MPa*300°C	_
15	窯業•土石製品	~150°C	_	0.8MPa * 170°C
16	鉄鋼業	~200°C	3.0MPa*300°C	_
17	非鉄金属製品	~150°C	_	0.8MPa ∗ 170°C
18	一般機械器具	~150°C	_	0.8MPa * 170°C
19	電子部品・デバイス・電子回路	~150°C	_	0.8MPa * 170°C
20	輸送用機械器具(自動車)	~150°C	_	0.8MPa * 170°C

参考:富士経済,業務施設エネルギー消費実態調査


出所:藤井実ほか「廃棄物の高度な地域熱利用のための技術・社会システムに関する研究」 https://www.erca.go.jp/suishinhi/seika/pdf/seika_2_04/3-1709.pdf

バイオマスの産業熱利用事例

表2:日本で稼働している主な産業用バイオマスボイラーの事例と課題等

事業所名	所在地	導入年	ボイラー容量	ボイラー種	製造メーカー	主な製品	燃料	
井村屋本社工場	三重県津市	2015	7.5t/h	實流	エンバイロテック	肉まん、あんまん	建廃、間伐材	
サーフビバレッジ山梨工場	山梨県甲州市	2007	3t/h	煙管	タカハシキカン	ミネラルウォーター	バーク、製材端材等	
太子食品工場十和田工場	青森県十和田市	2009	4t/h	煙管	タカハシキカン	豆腐、油揚げ	建廃	
カルビーポテト帯広工場	北海道帯広市	2011	6t/h	水管	よしみね	じゃがいもの菓子	建廃、流木	
松坂木質バイオマス熱利用協同組合	三重県松坂市	2009	18t/h	流動床	倉敷紡績	植物油、農業ハウス	建廃、間伐材	
白松浜御塩工場竹敷	長崎県対馬市	2011	1t/h	買流	巴商会	塩	製材端材	
苯亚制胺士基 工項		2007	2.8t/h	炉筒煙管	新芝設備	12.52	705 SEC (\$1) + 1 111 + 1	
兼平製麺本社工場	岩手県盛岡市	2011	3.0t/h	炉筒煙管	ワールド熱学	麺類	建廃、製材端材	
久慈パイオマス	岩手県久慈市	2016	500kW 1,200KW	買流 煙管	ヒルデブランド	しいたけ	バーク	
大王製紙可児工場	岐阜県可児市	2004	117.5t/h	水管	三菱重工	家庭紙、各種用紙、 特殊紙	建廃、パーク	
大王製紙可児工場川辺製造部	岐阜県川辺町	2009	16.5t/h	水管	よしみね	塗工紙	建廃	
DIC北陸工場	石川県白山市	2018	2.5t/h	水管	よしみね	合成樹脂	建廃	
ニプロファーマ大館工場	秋田県大館市	2014	11t/h	買流	エンバイロテック	注射剤	未利用間伐材等	
セーレン勝山工場	福井県勝山市	2016	10t/h	煙管	タカハシキカン	衣料品	建廃、剪定枝等	
マルセンクリーニング	北海道釧路市	2007	6t/h	煙管	ポリテクニック	リネン、クリーニング品	バーク、建廃	
コマツ粟津工場	石川県小松市	2015	3200kW	(不明)	イクロス	建設機械	未利用間伐材	
住友大阪セメント栃木工場	栃木県佐野市	2005	(直接加熱)	-	-	各種セメント	建廃、剪定枝等	
那珂川バイオマス	栃木県那珂川市	2015	4000kW	飽和蒸気	ポリテクニク	ALC製造工場 農業ハウス	間伐材、製材端材、 建廃	

将来的なバイオマス/廃棄物熱の利用イメージ

出典:バイオマス白書2022

コマツ

- グローバル規模での事業展開重機メーカー
- 発祥の地・石川県小松市栗津工場に2015年、バイオマス ボイラーを導入
- 地元森林組合から未利用材 チップを購入。リーズナブル なチッパーを開発
- 蒸気コンプレッサー→発電→空調→チップ乾燥と熱のカスケード利用
- 発電機以外に補助金は使わず 5年で償却の計画
- 二台目も導入

同社HP

https://www.komatsu.jp/jp/press/2015/management/

(株)トーセンの 那賀川町における 木質バイオマス 熱売り事業の事例

チップ使用量 1.1万トン/年

- ◆ボイラ効率 80~85%
- ◆蒸気供給量 【計画】

使用蒸気量 42,300 t/年 相当重油使用量 2,796 kl/年 相当重油購入費用 181,740千円

(65円/L 2012年) .380t/年(60%想定)

蒸気受入量 25,380t/年(60%想定) 相当重油削減量 1,677 kl/年 相当重油削減費用 109,000千円

(65円/L 想定)

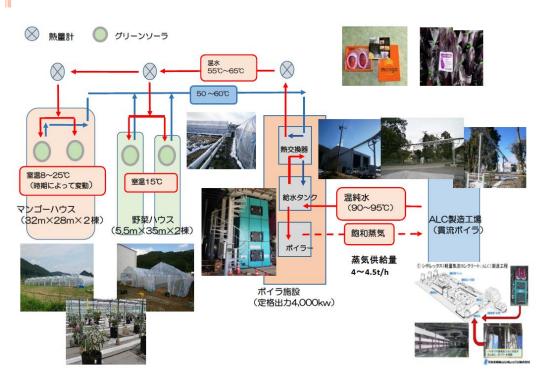
【実績】

蒸気受入量 27,815t/年(2018年実績 約65%相当)

相当重油削減量 1,817 kl/年(約1,600 t/年)

相当CO2削減量 4,923 t/年

相当重油削減費用(予想) 127,190千円 (70円/L想定)


(※参考:市場重油価格 75.5円/L(2018.10~12月平均))

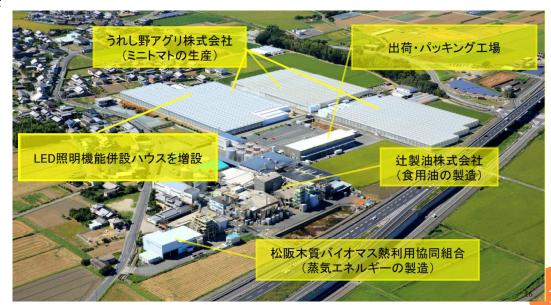
•導入費用:4億600万円

•補助金:2.5億円

•4,000kWの木質ボイラ導入

・軽量発泡コンクリート(ALC)工場に

蒸気を供給


・排熱をマンゴー栽培等ハウス暖房 に利用

16

出所:バイオマス産業社会ネットワーク第192回 研究会資料

辻製油のバイオマス熱利用

- 三重県松坂市の辻製油 業務用サラダ油などを生産
- ○2007年、イラク戦争後の石油価格高騰に対応するため、 地域材を使った18t/hバイオマスボイラーを導入
- 年3万トンのチップはウッドピア木質バイオマス利用協同 組合を設立し、調達
- 廃熱をトマト栽培に 利用
- うれしのアグリでは、 パートを含め140名 を雇用

バイオマス発電の排熱利用

安曇野バイオマス

- エア・ウオーターによるコジェネ事業
- シュパナー社のバイオマスガス化コジェネ1,960kWを導入 電気はFITで販売
- ○廃熱をトマト栽培に利用

出所:バイオマス産業社会ネットワーク第198回資料

津軽バイオマスエナジー

- 6,650kWの未利用木質バイオマス発電
- ○りんごの剪定枝なども受け入れ
- 発電所建設後、排熱利用するため、隣接してビニール ハウスを設置 トマト栽培
- 近年では農業用ハウス に排熱利用を行う 小規模バイオマス発電 が増加
- ガス化コジェネでは チップ乾燥に利用

EVZA熱処理・リサイクルプラント REMONDIS

シュタースフルト市(ライプツィヒから約50km) 廃棄物焼却施設からソーダ工場へ 蒸気を供給

- ■2つの焼却ライン 約60名を雇用
- ■家庭・業務・産業廃棄物 約38万tをサーマルリサイ クル
- ■鉄道、道路で廃棄物を輸送
- ■プラント効率60~80%
- ■プロセス蒸気 55.6MW
- ■発電出力 23MW
- ■最大265,000MWh/a 23bar ソーダ工場向けプロセス蒸気

ソーダ工場(ソーダーヴェルク・シュタースフルト)

Industriepark In

Soda

- 蒸気温度 400℃
- 重ソーダ灰(ガラス工業、化学工業の基材)生産

表:コールバッハ社ボイラーの導入事例

会社・組織名	国名	業 種	用。途	熱媒体	次 条件	バ・イオマスホ [・] イラー規模
Namibia Breweries	ナミビア	ビール醸造所	ビール醸造用の過熱水	過熱水	農場から出る木質 チップ	5,000kW
Greenspark / Parkers Nurseries	イギリス	温室	温室用の熱と電力	<u>'- </u>	生チップ、建設廃 材	5,140kW
Top Clean Textilreinigungs GmbH	ドイツ	ランドリー	産業用ランドリー向け 蒸気	飽和蒸気	木質ペレット	2,000kW
Heizwerk Uri AG	スイス	産業用温冷熱 供給	在田の烝乳供和	即和烝风	地域の林地残材 チップ	3,000kW
Ligna d.o.o.	クロアチ ア	木質ペレット	木質ペレット製造のため のベルト乾燥	温水と電力	製材端材チップ	5,140kW
Arco Clean Energy GmbH	ドイツ	醸造所および地 域熱供給	ビール醸造用の蒸気 および地域熱供給用熱	的机永気	地域の林地残材 _{チップ}	1,500kW
Steinwerke Kaidar	ドイツ	建築資材	石灰石・ドロマイト製造 用乾燥機	全儿 (市)	地域の林地残材 チップ	該当なし
Drvenjaca d.d Fuzine	クロアチ ア	建築資材	石灰石・ドロマイト製造 用乾燥機	熱媒油および 熱風	剪定枝チップ	6,000kW
M oßandl	ドイツ	建築資材	建材用砂の乾燥	熱風	建設廃材	該当なし
シムライズ	マダガ スカル	食品と飲料	バニラエッセンスおよび フレバー製造向け生蒸 気	飽和蒸気	剪定枝チップ	1,000kW

提供:コールバッハ社

ARCO CLEAN ENERGY GMBH

家庭、商業施設、公共施設に温水を供給

電気(バイオマスコジェ ネ以外に太陽光、水力 も)

ビール工場へ蒸気を供給

Moos(モース市 ミュンヘンから北西約100km)

まとめ

- ○バイオマス、廃棄物は現状ほぼ唯一、産業用の中高温の熱 供給が可能な再生可能エネルギー
- 熱のカスケード利用が望ましい(その中に発電が入るケースもありうる)
- 産業用熱(400℃~)→低温の給湯、空調、ハウス暖房 、乾燥など
- 2050カーボンゼロに向けては、残渣系バイオマスを 全量燃焼させるのではなく、蒸し焼きにしてその熱を 産業利用~排熱利用し、バイオ炭を土壌還元することが 究極の利用方法か

バイオマス白書2023

ーダイジェスト版

NPO法人バイオマス産業社会ネットワーク(BIN) Biomass Industrial Society Network

バイオマス白書2023

トピックス1 2022年のバイオマス発電の動向 トピックス2 バイオマスの産業用熱利用の推進

■2023年3月末発行予定サイト版

https://www.npobin.net/hakusho/2023/