SMART INTEGRATION OF DISTRICT HEATING AND COOLING

GREATER COPENHAGEN TAARNBY MULTI UTILITY

Stateofgreen, June 24 2021

Anders Dyrelund

RAMBOLL Bright ideas. Sustainable change

PRESENTATION AND BACK GROUND

• Ramboll

- Independent Multidisciplinary Consulting Eng. Comp. Owned by the Ramboll Foundation
- 16.000 Employees 300 offices in 35 countries, mainly Northern Europe and US
- New office in Japan
- World leading within several energy services, e.g. off shore wind and DH&C
- Anders Dyrelund
 - Civ.Eng. in buildings, Graduate diploma in Economics
 - 1975-81 Ramboll (BHR)
 - 1981-86 Danish Energy Authority
 - 1986- Ramboll
 - 1980 The First Heat Plan in Denmark for Aarhus, PM
 - 1981- Copenhagen Regional DH, task manager/consultant
 - 1990- Consultancy services to more than 20 countries

DEVELOPMENT FROM 2013 TO 2021

A solid majority of the Parliament agreed June 2020:

- Still objective to become independent of fossil fuels or CO₂ neutral in 2050
- Off shore wind shall be the dominating natural renewable energy source
- Heating and electricity shall meet the objective already in 2030
- The challenge is not to establish the wind farms, but to utilize the fluctuating renewable energy source in a smart cost effective way
- Therefore larger market share of DH&C
- Shift from gas boilers to DH or individual heat pumps has startet, taking into account cost-effectiv eness and environmental
- Ramboll from 10,000 to 16,000 employees

Energy infrastructure in Denmark Technical DH&C development 2010-

- District cooling in city centers
- Lower temperatures in consumers installations paves the way for more low-temperature DH
- Large heat pumps and electric boilers to use surplus wind
- Large efficient heat pumps to upgrade low quality heat
- Larger storages to use available heat
- More shift from gas to DH
- More integrated markets

THE SMART ENERGY SYSTEM COST-EFFECTIVE, RESILIENT AND LOW CARBON

- National power grid
- National natural gas grid
 - Gas storage, CHP, Biogas, P2Gas
- City-wide district heating grid
 - Storage for CHP and RES
- City district cooling grid
 - Storage and optimal cooling
- Buildings and other end-users
 - Low-temperature heating
 - High-temperature cooling

THERMAL VIRTUAL ELECTRICITY STORAGE (LIKE A BATTERY) REDUCE CURTAILMENT OF WIND AND BALANCE THE SYSTEM

- Baseline
 - Small heat pumps without storage or gas boiler back-up
 - Can-not adjust consumption to the fluctuations of the wind

- The virtual electricity storage:
 - DH hot water and DC cold water
 - Hot and cold water storage tanks and pits
 - Large heat pumps, to be interrupted at any time as long as needed
 - Electric boilers at low electricity price + up/down-regulation
 - Gas fuelled CHP plants, only at high electricity price + up-regulation
 - Gas (biogas) boilers back-up

GREATER COPENHAGEN DISTRICT HEATING SYSTEM

- Smart city land mark
- 70 million m2 1 mill. residents
- 12,000 GWh heat production
- 20 municipalities (Copenhagen 50%)
- 3 heat transmission companies
- Optimal market share of DH vs. gas
- 99 % connection to the DH grid
- 3 biomass CHP plants (65%)
- 3 waste to energy plants (30%)
- Heat pumps, Peak boilers.. (5%)
- 3 x 24,000 m3 heat storage tanks
- 8 District cooling systems in operation, more in the pipe lin

See also case 1 out of 8 in this publication from EU: https://publications.jrc.ec.europa.eu/repository/handle/JRC104437

A TRANSITION FROM COAL-GAS-BIOMASS CHP TO A MIX OF BIOMASS CHP, HEAT PUMPS FOR DH&C AND ELECTRIC BOILERS

- Waste for energy is fully used
- CHP by-pass steam turbines + electric boilers
- Large heat pumps mainly for combined DH&C

Heat pump

Gas boiler

2029 2030

2032

Biomss CHP

- Large heat storages tanks and pits
- Large chilled water storage tanks

Electric boiler

2024 2025 2026 2027 2028

Waste to energy

12000 11000

10000

9000 8000

6000 5000

RAMBOLL

Heatproduction (GWh)

■ Biomass CHP Bypass ■ Gas CHP

Transition towards 2030 - Huge demand response on electricity prices Smart integration of electricity from fluctuating wind and solar PV

DISTRICT HEATING IN TAARNBY IS A PART (2 %) OF THE GREATER COPENHAGEN SYSTEM

• 1980

- 100% oil boilers in Taarnby
- 1985 optimal zoning of new DH and gas grid
 - 60% to hot water DH, large buildings (green)
 - 40% to gas, single family houses (no color)
- 2018
 - First DC system combined with DH
 - Integration of DH with airport campus grid
- 2020-2030
 - Second stage of the DC project
 - More DH to replace gas boilers (blue)
- 2030-2035
 - Remaining buildings to DH and heat pumps

KEY FIGURES OF THE DH SYSTEM FOR INTEGRATING DC

DH demand 170 GWh (growing)

Heat losses in network 6%

60 MW Maximal capacity demand

7 MW minimum capacity summer

60 MW Heat from the transmission system

60 MW back-up boiler at the airport

 $6,5 \text{ MW}_{\text{heat}}$ HP extracting heat from cooling, wastewater and ground water

Summer: ground source cooling base load, HP is peak, all buildings can be supplied from HP, at 70 dgr.C

Winter: HP base load, temperature to most consumers is boosted by transmission system

SMART SECTOR INTEGRATION

- Air from waste water cleaned, which paved the way for a new city district
- New metro station paved the way for Kastrup Business District, all buildings have need active cooling in Danish climate
- Plant is located at the wastewater treatment plant as space is expensive
- 5 circulating integrating water loops:
 - from tank to DC grid
 - from heat pump to cold storage tank
 - from heat pump to DH grid
 - from heat pump to treated wastewater
 - from heat pump to ground water

DISTRICT COOLING IN TAARNBY STAGE 2 FULLY DEVELOPED

- Cooling demand in stage 2 9,5 MWc / 9.000 MWhc
- Capacity demand to network
- Installed capacity
 - Ground source cooling
 - Heat pump cooling
 - *Heat pump heating*
 - 2.000 m3 chilled water tank >2,5 MWc / 0 MWhc
- Heat Pump heating efficiency compared to basecase
 - Cogeneration heat/cold 7.000 MWh COP=6
 - Ground source 5.000 MWh COP=4,5
 - From waste water

8 MWc expected 9,3 MWc incl. back-up 2,0 MWc / 4.000 MWhc 4,8 MWc / 5.000 MWhc 6,5 MW_{heat} / 50,000 MWh_{heat}

38.000 MWh COP=3

See case 1 out of 8 in publication from EU, February 2021: https://publications.jrc.ec.europa.eu/repository/handle/JRC123771

DC SAVES INVESTMENTS AND COSTS

81 mill. DKK

- Investments cooling baseline 97 mill. DKK
- Investment in DC project
 - DC plant incl. building 55 mill. DKK
 - DC storage tank 4 mill. DKK
 - DC network 19 mill. DKK
 - Connection to DH network 3 mill. DKK
 - Including transformer to 10 kV to save costs
- Stage 1 only (no stage 2 is worst case for financing)
 - NPV Benefit for the society 60 mill. DKK
 - NPV Benefit consumers and utility 23 mill. DKK
- Stage 1 and 2
 - NPV Benefit, society 103 mill. DKK
- NPV Benefit, consumers and utility 60 mill. DKK (90 mill.)

WHY IS THIS PROJECT A GOOD CASE TO MAKE CITIES SMARTER AND MORE LIVEABLE

- Focus on energy solutions which reduce costs and improves environment and resilience in cities
- Focus on municipal commitment in order to implement the solutions to the benefit of the consumers and for integrating energy and environment in one utility
- Focus om municipal co-operation
- Focus on sector integration, which opens for smart city solutions across following sectors:
 - The energy sectors: Electricity, District heating, District cooling and gas
 - The environment sectors: Waste water and ground water resources
 - The building sector: Ferring and Scandic go for sustainability as being a part of the community
- The symbiosis between
 - heat pump for combined DH&C and
 - heat pump for generating heat from waste water
 - is the key to cost effectiveness and bankability, in particular for the difficult stage 1.

THANK YOU FOR YOUR ATTENTION

QUESTIONS

AD@RAMBOLL.COM

